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Abstract

In this paper we are concerned with a semilinear wave equation with initial
data given on two transversely intersecting null hypersurfaces in the Minkowski
space IR"T!. We prove existence and uniqueness of a solution in a (one-sided future
directed) neighborhood of the initial data null hypersurfaces.

Résumé
Dans cet article, nous nous placons dans ’espace de Minkowski JR"*! et nous nous intéressons
a une équation d’onde semi-linéaire avec données initiales sur des hypersurfaces caractéristiques.
Nous prouvons ’existence et 1'unicité d’une solution dans un voisinage dirigé vers le futur d’un
cOté de ces hypersurfaces.

1 Introduction

The problem we are interested in here is about a semilinear wave equation with data given
on two transversely intersecting null hypersurfaces. Many problems with characteristic
initial values have been studied in the last forty years. H. Friedrich [4] has written a
few papers about characteristic initial value problem in the context of Einstein’s vacuum



field equations (his work consists essentialy in showing the way to apply the results of
existence and uniqueness of solutions of wave equation with characteristic initial value).
R. Courant and D. Hilbert [3] have shown the uniqueness of a solution of wave equation
with data prescribed on a characteristic half-cone. Other works treat the Cauchy problem
for quasi-linear equation with data on a characteristic conoid as F. Cagnac [1], F. Cagnac
and M. Dossa [2]. In this article the initial characteristic hypersurfaces are N, N_ defined
in the Minkowsky space IR"! by

Ny={t+2'=0,t>0,(2?..,2") € R"'}
N ={t—2'=0,t>0,(2%..,2") € R"'}.

We know by standard results that there exists a global solution in the linear case. But in
the case of a nonlinear hyperbolic equation, the published proofs give an existence (and
uniqueness) of solutions in a neighborhood of the intersection of the null hypersurfaces,
namely neighborhood with a finite time, as it is done in H. Miiller zum Hagen and H.-J.
Seifert [5] or A. D. Rendall [6].

In this paper we propose to demonstrate the existence and uniqueness of solutions in
a one-sided neighborhood of both null hypersurfaces and not only of their intersection.
More precisely, we consider in JR"*! the problem

Op(z,t) = F(p(z,t),z,t)

§0|N+ = P+ (11)
elv. = ¢-

82
where O = _ﬁ + Aw

and ¢ can be vector-valued .

We show, under certain conditions, that, for any positive real R, there exists positive
reals R” and R” such that there exists a unique C? solution in the domain Vg := {0 <
t—2z' <R 0<t+z' <R, (2%,..,2") e R} JH{0<t+2' <R 0<t—zt<
R, (2%, ...,2") € IR"'}, then UVR gives a one-sided neighborhood of the initial data

R
hypersurfaces. We can visualize a part of this neighborhood by the following figure:



The proof is based on the Galerkin method with estimates of energy in some special
Sobolev spaces. The mathematics tools used in this article are very classical, but the
originality here is to apply a standard method by considering a isotropic direction as the
time direction. Moreover the implementation of the different parts of the proof are not
so trivial.

The structure of this article is organised as follows.

We start in section 2 by a short presentation and results about the spaces in which we
will work. In the third section, we give the assumptions on the functions F, ¢, »_ and
we transform the problem to obtain an equation more convenient with a new function
(@, u,v,y) — H(P,u,v,y) where u = (t —2')/2 ,v = (t+2")/2,y = (22,...,2") and H
vanishes at (0, u,0,y). In section 4, we construct a spectral approximation of a solution of
the precedent equation. Then we estimate in the fifth section the energy of these solutions
in the spaces introduced at the beginning. We deduce of this in section 6 the existence of
a solution ¢ and we discuss its regularity. After that in section 7 we come back to the first
equation and discuss also the regularity and uniqueness of the solution of the problem
(1.1), to prove the uniqueness we use a classical tool namely the energy-momentum tensor.
In section 8, we resume the results obtained in the simpler case of dimension 1+ 1 where
we can work in Sobolev spaces H*.



2 Spaces H,

Let R be a strictly positive real, and T"! a torus of length T in each direction. We will
work in the spaces H,,, where

Homrp([0;2R] x T ) = {go € L*([0;2R] x T 1);

2R aa am 8Vn—1 .
Z /0 /Tn—l | Ove Oyt T ayun_l@ ‘2 dv d 1y < 00

0<a<k n—l
0<v[<m

with derivatives of ¢ understood in the distribution sense. H,, , is a Hilbert space hence
it is reflexive.
We take a orthonormal basis of L?([0;2R] x T*~'). So we set

U, (v,y) = (2R)7%Tf%ei(a°”%+a'y27ﬂ) with o= (ag, @) € Z"

2R
< U, f>= (2R)_5T_"T_1/ / e HQOWEFEET) £ (), 2)dw d" 2 .
0o Jrn

We know that f = » < ¥, f > ¥, and we have

aceZ"”

I f 1= > I D3Dy f 122 ozrixrn-1y -
0<a<k
0< |y <m

The proofs of the following results are similar as in the classical Sobolev spaces W*P
and can be found in Appendix A.

Lemma 2.1 We have the equivalence

1S Nt~ (D 1< Wa £ > (14 [ ao ) (1+ | @ [)*™)?

aEZ™
Lemma 2.2 Let |l a positive integer.

]f{k>%+l then Mk ([0;2R] x T 1) € C*([0; 2R] x T"1) .

Lemma 2.3 If k < k' then Hpmpr — Hpm e with compact embedding.
Similarly, if m < m' then Hpy , > Hm with compact embedding.

Lemma 2.4 If f € Hpp N Hpmpr with k < k' then Vv e|0;1],

1—
f € Hmppra—e ond || f llat e SIS 1, U N5
Similarly, if f € Hpp N Hpy ) withm <m’  then Vv € [0;1],
1—
f€Hymiym  and | F oy o SIS g, IS D5 -



3 Transformation of the problem

In this section, we show how we transform the problem (1.1) to obtain a problem where
the first equation is replaced by an equation of the form

0% ~ -
auavw(u, v,y) = H(@,u,v,y) + Ay@(u, v, y)

t—a! _t+x1

v =

’ 2

We notice that Ny ={v =0, u >0, ye R"'}and N ={u=0, v>0, ye R"'}.
2 2

y = (22, ...,2") and H(0,u,0,y) vanishes.

where u =

If the function ¢ satisfies

uau“) = 3 8u<p the equation becomes:

0
82
Ooudv v=

—F(p,t, 3", y) + Ay = H(p,u,v,y) + Ayp. (3.1)

Concerning regularity of the functions F), ¢, ¢ in the problem (1.1), we shall assume
for the moment that there exists m € IV such that the following holds :

(i) F:(0,t,z',y) — F(0,t,x',y) satisfies that for any a,b € IN,0<a<1,0<b< 1,
yE€IN, pe N1 0< v+ |u <m+1, DngngDgF is continuous in all its
variables.

(ii) @, is of class C™5, p_ C™** and ¢, , ¢_ satisfy the corner condition:
©+(0,y) = v-(0,y).
(iii) There exists a real T > 0 such that F, ¢, ¢_ are T-periodic in each y;.
Remark 3.1 : The corner conditions are only those in (ii) because for the partial deriva-
tives with respect to u or v separately, we have

k k
ww(O,O,y) = ﬁm(&y)
k ak
ws@(O, 0,y) = @w(O,y)

and for the partial derivatives with respect to mixed v and v, the corner conditions are
assumed by the equation (3.1), namely

2

oudv 14

(07 0’ y) = H((p(ov 07 y)7 07 07 y) + Ay@(oa 07 y)

By induction, we get higher derivatives with respect to mixed u and v at (0,0, y). A



With the definitions of H,u and v above, we see that H satisfies : for any 0 < a < 1,
0<b<1,0<y+|pu <m+1, DZDSDgD;jH continuous in all its variables.
After that we calculate %(p(u, 0,y) with the initial values as follows: we know that
82
ud (,D(U, Oa y) = H(QO+(U, y)a U, Oa y) + Ayg0+(u, y)
uov

(we can invert A, and the limit in v = 0 because ¢ is supposed C? in all its variables, for
the same reason we will invert d, and the limit in 4 = 0 in the third line below). So by
integrating in u, we obtain

u

0 0
%QO(U, 07 y) = %@(Oa 07 y) + /q; H(<p+(57 y)7 S, 05 y) + Ay‘ﬂ+(3> y)dS
0
= %(p—(oay)_'_‘/o H(Q0+(S,y),5, an)+Ay§0+(Say)d8'
Then we set

G(u,v,y) = @(u,v,y) = (¢(u,0,y) + %w(u, 0,9) v) =: (u,v,y) — (o1, p_).

Thus ¢ and its first derivative in v vanish at ¥ = 0. On another hand, if we take the
equation (3.1) and put @ in it, we obtain
82

auavw(u,v,y)

= H(@+ (¢4, 0-),u,v,4) + Ay (B + 004, 9-)) — 88; (4, -)
= I{(¢+5(90+;S0—)7U7Uay)+Ay(€0+5(€0+: )) ( ( (u,y),u, 0,y)+Ay(p+(u,y))
=: H(@: U, U, y) + AZ’J@ (32)

H has the same regularity as H because §(¢py, ), A,6(py, ) and auavé((p+,cp,) are
of class C™*1,

If we look the value of H + Ay@ at v = 0 we can see that it vanishes:
H(@(u,0,y),u,0,9) + Ay@(u, 0,y)
2

9
= H(o(u,0,y),u,0,y) + Ay(¢)(u,0,y) — auavé(%’ @)
2

0
= H(p(u,0,y),u,0,y) + Ay(¢)(u,0,y) — Sub ©(u,0,y)
=0.

But if ¢ is supposed C? in all its variables, then ¢ is continuous in all its variables, so we
can invert A, and the limit in v = 0, thus Ay (@) (v, v,y)|y=0 = 0, hence we have

H(g?)(u, 0,9),u,0,y) = H(O, u,0,y) =0 (3.3)



So in setting

. 0
P-(v,9) = 9-(v,9) = (04 (0,9) + 7 0-(0,9) v) (3.4)
we want now to solve the problem :
0? ~
%@(uavay) = (cﬁ(u,v,y),u,v,y)+Ay95(u,v,y)
P(u,0,y) =0 (3:5)

¢(0,v,y) = ¢-(v,y)
where the assumptions of the regularity of the functions H and ¢_ are the following:

(i)  H:(0,u,v,y)— H(,u,v,y) satisfies that V a,be IN , 0<a<1,0<b<1,
yEIN, pe N1 0 < v+ |y <m+1,
DDDyD!H is continuous in all its variables (3.6)
(i1) @_ is of class C™**

(i41) there exists a real T > 0 such that H,$_ are T-periodic in each y;.

4 Spectral approximation of ¢

We take an arbitrary real number R > 0. Let

Jp=) <Uup>T,

1
|0¢|§g

We know that there exists a continuation of H in v from [0; R] to [0; 2R] such that for any
0<a<1,0<v+|p| <m+1 we have D;}D;’D;jf[ continuous in all its variables (indeed,
it suffices to set for v > R, H(0,u,v,y) = H(O,u, R, y) + (v — R)%ﬁ[(&,u, R,y)) . The
function H in the following will be this function multiplied by a smooth cut off function
¢r of v equal to 1 on [0; R] and to 0 on [2£;2R)]. Similarly, there exists a continuation
of ¢_ in v from [0; R] to [0;2R] of class C* in all its variables. The function ¢_ in the
following will be this function multiplied by ¢g -
We will build a solution ¢, of the problem:

A

Je@s = (‘55

0% o~ .
mQDE(ua v, y) = JEH(QOE(ua v, y)a u,v, y) + Aywé‘(u’ v, y) (41)
Pe(u,0,y) =0

A

(,55(0, v, y) = Je@— (U, y)

We first show the existence of the ¢.. By the first equation of problem (4.1), ¢, has
a finite number of components ¢, , :



(0, 9) = > Gealw)Wa(v,y) with @, o(u) =< Ta(v,y), Gealu, v, y) >

lo<2
We differentiate ¢, in v, after in u, on one hand, we have

0 _ T, .
a—v%(u,v,y) = gl QPe o (1) ¥o(v,y)
laj<i
0% T . 0
m%(%vay) = Ez aO%@s,a(u)\ya(Uay)'
laf<l

82
8 a @8(u7vay)
:Z<\I/5, ngavlllv,uvy—i-A Z(pm (v,y) > ¥s(v,y)
BI<E lyl<t \7\<1
= Z <\IJ,3: Zg057\117,uvy ‘J’_Z ny](ﬁs,'y vy)>\IJg(v y)
BI<E <2 lvI<t

Hence with these both results, by making scalar product by ¥, (recall that (V,)aezn
is an orthonormal basis), we can identify the components:

T, 0 .
Ezaoa_u(pe,a( =< ‘IjaaH Z(Ps'y‘lj'yau v,y +Z T2 nyjgps,'y )

lyl<2 lyl<i

0
We can distinguish two cases. First if oy # 0 we obtain a—(ﬁg,a(u) = Fa((¢€,ﬂ)|ﬂ|<;,u)

0

with F, and 5% ——~—F, continuous in all their variables ((¢:,5) /< <L, u) because H and DyH
Pe,p

are continuous in all their variables and <, > is sesquilinear.

Now, if oy = 0, to assume the third equation of problem (4.1) we want that
(u,0,y) Z Pea (U ZTJLT_leia'y%r =0.
lo|<2

Recall that oo = (ayg, @), we can decompose this sum in a sum on @ and a sum on a, and

as ap just intervenes in @, , we obtain : Z ( Z Pe,alu ))(2R) YT O F —
lal<l {aosl(a0@)<t}

0. As this holds for every y in T""!, we necessarily have
Va such that [a| < 1, Z Pea(u) =0

{aos|(c0,@)[< 2}



hence we define @, o) by

1 - ~
Va such that @ < —, Pe 0,0 (u) = — Z Pe (ao.a) (1) (4.2)

9
{@0#0;|(a0,@)|< 1}

Finally all the ¢, o are C'-function of the Pe(agm) With ap # 0 so we can express

0
8_u('56’a(u) in function of (((ﬁg,ﬁ){|ﬂ|5%;ﬂo7&0}, u) as follows :

1 0 . ~
Vag # 0, o] < 2’ a—%,a(u) = Fa((gos,ﬂ){\mg%;ﬂoqéo}au)

with F and F continuous in all their variables.

By the theorem of Cauchy-Lipschitz, we know that if a function f is continuous, locally
Lipschitz with respect to its second variable, the problem vy’ = f(¢,y) with y(ty) = yo has
a unique C'-solution y(¢) on a maximal open interval I. Here we take

){|a<1 200}
and y(0 =(2R —3p-2 (2R [ emileowgraaR) 5 w,zdwd"—lz) .
y(0) = ((2R) o Jen- P-(w:2) {la/<1;0070}

For all ¢ > 0, there exists a maximal open interval I, containing zero, in which we
have a unique solution @. = (@c.a){ja/<1apz0; C" 10 U (the (Pe.a){ja/<L,a0=0} aT€ given by

(4.2)).

Moreover, @, is smooth in (v,y) on [0;2R] x T !, so we can commute all the partial

derivatives in v and y; at any order. And as for all 8 in IN, v in IN"7! | aafﬂ 631; Qe is a

finite sum of products of C'-function in u by C'-function in (v,y), we have 2% aam @e 1

Y= (@s,a){|a|5§;ao;éo} f=

C*(I. x [0;2R] x T*'). So we can commute -2 with all the partial derivatives in v and
y; at any order.

Remark 4.1 : In all this section if we keep the expression of H with H and §(¢,¢_),
we see that we just need the following assumptions:

(1) H:(0,u,v,y)— H(f,u,v,y) satisfies that

H and %—ZI are continuous in all their variables
. _ 9’H 9’H 0%°H 9°H
Vi=1,.. L %67 85,000 60y oy

(1) ¢4 is of class C* or H® with s > I +2
(117) @_ is of class C® or H*™!
(iv) there exists a real T > 0 such that H, ¢, p_ are T-periodic in each y;.

are continuous in variable y;

(when we take ¢ in H® the gain of an ”half order” of derivative in comparison with the
embedding H® < C* for s > 4 + % comes from the fact that at a certain step we just
need the continuity of ¢ in variable y).



5 Estimation of || ¢.(u) H’Hm,z

To estimate || @(w) ||#,,,, we will first bound -& || @(u) ||3,., by a continuous function
of || @:(u) ||4,,, and then we will use the Gronwall lemma.

5.1 bound of L | &.(u) ||,

Proposition 5.1 If m > "T_l , we have the following estimation

du || e(u) ||g-tm,2([0;2R}x’I[‘n—1)§ F(|| @e(u) ||’2}-Lm,2([0;2R]xTn—1)ﬂu)
with F continuous in both variables.

Remark 5.1 :
1) The assumption m > "T_l comes from the embedding H,, 2 in L* and so we can bound

H((e,u,v,y) by a function of the norm Moo of Oc(u).

2) By writing in details the partial derivatives of H with the function H and 6(¢p., ¢_),
we can reduce the assumptions on ¢.,¢_. Then, for this proposition, we can replace
assumptions on ¢, ¢p_ by the followings :

o € C*NH™D or g, € Hwith s>I+2ands>m+5

o€ C*NH™™* or p_e€ H L

3) If the functions H and @_ are not T-periodic in each y; or not defined on R
in their variable y, we can get the existence (and uniqueness) of a solution of the problem
(1.1) but in a smaller domain. We will see this in theorem 7.3.

Proof of proposition 5.1:

d
The proof of the proposition is organised in five steps: estimation of T | e(w) |22,
u
o8 ..
estimation of — || 9 ﬁgpg( u) ||72, estimation of || 81)8 ﬁgpg( u) ||32, estimation of
oy iy
— || === (u
u " Ov? 8;1/3%

|| 72, conclusion.

10



d
5.1.1 Estimation of Ju | @< (u) |2

d
As @, is in C'(I; x [0;2R] x T"!) we can commute . and / S
u

d 2 2R a 2 1
T | @e(u) [I22o2mxmn-1y = /0 /Tn_1 a—u(%) dv d" 'y

2R a .
= 9 5 (— 3. )dv d" 1y,
/O /TnlsO(au@)v Y
2 2

As ——¢@. equals ———@. and so is continuous, we also have by integration in v:

ovou oudv

2

ovou

5o (@ 00) = 5 (@0 + [

Pe(u, s,y)ds. (5.1)

. . . . . . 0 u+ha03 — @ U,O,
But @, is C' in variable (u, v) so we can invert in the expression Ze y) = &l v)

h
0
the limit in v = 0 and the limit in A = 0 corresponding to B0 As @(u + h,0,y) =
0
@e(u,0,y) = 0 given by the third equation in (4.1) we obtain %((ﬁg) (u,0,y) = 0. Now,
2 52
by using mgbg equals %955 and the second equation of (4.1) we obtain

d .
du | @e(u) ||%2([0;2R]><'JI‘”*1)

2R v
=2 [ [ atwon) [ (HG.ws)+ A2)ds do &y (52
0o Jrnt 0
On one hand, by using Cauchy-Schwarz inequality in L?([0;v]) and the fact that v is
in [0; 2R] we have for the first term of the sum in the right member of (5.2)

| / LB (G, 5,5)ds| < QR (| LH(Gerw,5,9) llgonm) -
And so by definition of the norm L? we deduce
I [ L 5,00 len < R | LA 5.9) laagoancensy -
By using Cauchy-Schwarz inequality in L?(T"* ') and the inequality above, we obtain
o[ R sisl < o) ol [ LE e )ds ooy
< 2R || @(u,0) [lg2erny || JH (Ge,u, 5,y) lraopmixrn-) -

11



We know by Plancherel’s theorem that for any (2R x T™~!)-periodic function f we have
| f17.= Z | < U, f>]* so

aezn-‘rl

| Jef Ne2<|l £ llee (5.3)

and as the function H is continuous we can bound as follows

| @/iﬂmW@mmmw|
Tn-1 0

1 - Ty o~
< (2R)? || @:(u,v) [l H(2e, u, 5,9) |2 qo2mxrn-)
n—1 ~ ~
< @R)T = || @e(w,0) [[p2(rn-ry  max [H(0,u,s,y)|
s € [0;2R]
0 € O
= Tn—1

where O, = [— || @<(©) ||zoo(0;28]xT7-1), || Pe(t) ||Lo0(0:2R]xTn-1)] SO We obtain
U A
|/ 1955/ Je(@e,u,s,y)ds Ayl < cr(|| @o(w) || (oizrixn—1), w) || @e(u, ) || L2(rn-1)
Tn- 0
with cg continuous in all its variables.

On another hand, for the second term of the sum in the right member of (5.2), we
have in the same way

\/ 1955/ Ay@eds d* 'yl < || @e(u,v) ||L2(T"1)||/ Ay@eds ||p2(rn-1)
Tr— 0 0
1 ~ ~
< 2R)2 || @e(u,v) [[2rn-1) |l Ay@e(u) ||L2o2m xTn-1)
1 ~ ~
< 2R)? || @e(u, ) [[2rn—1) || Pe(t) l|#4,m 2 (052R1xT-1) -

Finally, we integrate in v and add these two estimations, so we obtain

d - - -
7 I @=(u) 1Z2qo2mxrn1y < 21 @e(u) llz2qoszrixmny cr(ll @e(w) [lpoe(orixTn-1y), )

1 ~ ~
+2(2R)2 || Pe(u) ll2qozrixTr-1) || Pe(t) 13 21028 xTn-1)

hence as if m > "> we have H,,,2([0; 2R] x T"') C L*°([0; 2R] x T"!) (see lemma 2.2),
and we can write

d . . .
gu |1 #:(v) I Z2(oizrixrn-1) < LRIl P (W) || (02 ) xn-1), w) (5.4)
with ¢;g continuous in all its variables.

12



d , 0°
5.1.2 Estimation of ™ I 8—yﬂgbg(u) 152

o8

Let 3 € IN"7', 1 < |B| < m , we denote 507 where 8 = (1, ..., Bn—1) to mean that we
)

differentiate |3;| times with respect to ;.

0 d

As 5 5 5P isin C*(I: x [0;2R] x T"!') we can commute Tu and / , and after as we have
u

Y op+2 op+2

Bvdudy /3% equals Dudvdy ﬂ% and so is continuous ,

done for 62955 in (5.1) we use that
u

hence
2R 08 o 0P
. 2 2 (T0: ety = 2/ / —Pe———(P)dv !
|| /3@ ( ) ||L ([0;2R]xT ) Tt 8y’3¢ ou a 5(@ ) v Yy

2R 8 8
= / /]I‘ . ayﬁ(ps ayﬂﬂps)(u 0, y)

v get!

n—1
" o OvOudy 555 (Pe) (U, 5,y) dsldv d"y.

o 6 0°
We can show that (— 3 ( By ﬁgpg))(u,o, y) equal zero in the same way as we have done
U

0
for a—(gég)(u,o,y) = 0 because for any (u,y) in I, x T"', we have ¢.(u,0,y) =0, and

57
for any |y| < |8, ( 5e) is in CH(I, x [0;2R] x T"!) so we can invert the limits in

v=0and in hy = O, ..., hgy1 = 0 for the partial derivatives in u and y* .
HP+2 H8+2
Finally, as W@ equals m(ﬁs and by using the second equation of (4.1),
we obtain
d 0%

du | W‘Pe(u) ||%2(0-2R]><T"—1)

2R 8 .
=2 . J.
/ /T layﬁw/o ayp

o . . o ~
Now we will show that g ——(J(H (P, uy 8,Yy)) = Je(=—=H(Pe,u, 8,y)). By the defini-
Yy

D:}z

(Pe,u,8,9) + AyPe)ds dv d"~ Ly

13



tion of jg, and in the end by doing an integration by parts, we have

%jgﬁ(@g’ u’ S’ y)

a 2R
ay<Z<2R>—‘ o / / ORI H (G, w, 2)dw &'z Ya(s,))
7 |<1 n—
2R -5 L 2m —i(aowE 4@z 2E) 17( n—1
: 1 (2R)~ (?ai)e R ) H(Pe,u,w, z)dw d™ 2 a8, y)
|<1 "

2R
Z / / (2R) 2T’_[e (0w gtz VH(@e,u,w, 2)] et dw d™ 22 a(s,7)
al<! e
0

+ ‘] (8— ((1061 u, s, y))
where [f(2z)]ser means f(b) — f(a) if T = [a;b). We have supposed that H and ¢_
are T-periodic in each y; , it implies that ¢, is T-periodic in each y; (by uniqueness of
solution given by the Cauchy-Lipschitz theorem in section 4), thus the first part of the
second member in the equation above vanishes and we have
0 . 0

8—yijsﬁ(¢s’ u, s, y) = Jsa—yiﬁ(gasa u, s, y)

For higher derivatives, we proceed by recurrence with the same method (we can notice
o8
o0 ayyH By SDE are also T-periodic in each y;).

that for any |y+v| < |B], the functions

So the following holds:
For any B€ IN""!, 1< B <m,

P N L
—(JEH(QDEaua S y)) = J (8—H(¢Eaua8ay))' (55)
Hence we obtain

d 0 _
du | a—yg%(u) ||%2([0;2R]><'J1‘n*1)

2 - aﬂ , J 8 A, 5. 1ds d dn—l
- / /'JI‘" 1 (6—y,3(p5) / [ a 9.8 (QOEaua Say) + yQOE] s av 1Y
2R ; aﬂ i .
N 2/ / / ,3906 H(gog,u s,Y) + AyPelds dv d
Tn—-1J0 y

we can put i . under [’ by continuity of the functions on [0;2R] x T~ 1).
oyP ¥ 0

14



Now for the first part, as we have done before, by using the fact that v is in [0; 2R)],
Cauchy—SChwarz inequality, and (5.3) we can bound as follows

Aa ) n—1
/][‘n 1/ a ﬁgpg _EH go&:u S y)de ‘

/ / 9 g H(@.,u,8,y)|ds d* 'y
']I‘n ) ayﬂSDE a ﬂ QDEIJB y

0 -
ayﬂ%( ) || z2ozryxre-1 || J “ay 5H(<P5,U,Say) | z2(0s2R)x T 1)

op of
< =@ (u) |2qoprixmnn || 55 H (B, 1, 5, y) lz2(02mxTn-1) -
oyP oyB

IN

o8 . otn

Therefore we notice that a—yﬂH(@E,u,s,y) is a sum 0f(6056 m ) (e, u, s H8 =P (u
5u .
with [0 + p| < |5] and > |v| < |B]. By assumption (3.6) we know that WH is con-
tinuous, so when we take the norm L? of WH(gog,u, s,y), we can extract it, thus we
obtain
0% -
|| 6—yﬂH(€05,U,5,y) ||L2([0;2R]><T“*1)
aé—i—u B o”
< ———H(0,u,s, —Q . n—
< > ,max | H O u s, y)] | Hayu%(u) 2202 mxmo-1)
l0+ul<IBl g co. v
yeTnt

Where @5 = [_ || @E(u) ||L°°([0;2R]XT"_1)a || (ﬁs(u) ||L°°([0;2R]XT"_1)]' Then as we knOW that

@e(u,v) is in CO(T" ') N H™(T™ '), we can apply the proposition 3.6 page 9 of Taylor [7]
(which is still available with T"! instead of IR") with f = g = @.(u,v), thus we get

0 . . -
1 gy P V) Iz < el @e(w, v) floooqen || @<, 0) llamcen-s -

Now we integrate the square of this inequality in v on [0; 2R], it gives

14

111 5578 WaqoampersnS € I @) Fmquomernmsy | o) e, oo
Hence we have

o8 .
| By B H (e, u,s,y) ||L2 ([0;2R]x T»—1)

aé+u . ~ N
<e o max |age cH O s 9] @) s 1| 9:00) I - (56)
l6+pl<IBl  gco.

yeTnt
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Therefore if m > 2%, we obtain

[ a0 s e )i @3] < Conll 2e6) It soprene-
Tn

with Csyg continuous in all its variables.
Then by integrating in v on [0; 2R)]

2R
o8 - .
/ /’H‘n 1/ 8yﬂ 5 anﬂH(QDE’ua S,y)ds dv d 1y

< 2RCoR(|| G () |2, 005287 xT71), 1)

On another hand, for the second part, by continuity of the functions we can commute
an,l and fov, and as %QBE is T-periodic in each y; , we have by integrating by parts in
each y; on T :

2R
] 5.ds dv dv!
/ /T/ ayﬂwaﬂ Aypeds dv d™y

2R 0 aﬂ o o
=2 J)dv ds dly
/0 /0 /Tn ) By; 8yﬂ )8y](3yﬁ(p)

2R
2 m—1
/ //Tnlay(?ﬂ(pg)dvde

Thus
d 8ﬁ ~ 2 ~
Tu | a—yﬂ%(u) [ z202m)xTn-1) < 2RO (|| $e(w) (|24, (0321 xT7-1), ) (5.7)
08
5.1.3 Estimation of dd I 681)8 5Pe (u ) |32
-1 8 aﬂ 1 1
For any g € IN" ', 0 < || < m , a s 5 8ﬁcpglsmC’(I x [0;2R] x T" ') we can
d o8+2 oP+2
commute Tu and / , and Judvdy ﬂq)g equals By oudn ——— Q. , We have
d 0 0° 2R 9b+1 9% 92
R S ~6 n = ~5 e d dnil .
o 5500 Wroamery = 2 [ [ (Graaed s (G @y
Then by using the second equation of (4.1) and (5.5) , we obtain
d 0 0°

T | %W@-(U) 172 o2 rpxmn-1y

" aﬁﬂ D j & 5 o A, 3 )dy d* L
- / /]I:n . avayﬂ(ps a a8 ((psau v y) 8—2/’3 y%) v Y.

16



As we have done in (5.6), we can deduce that

2R 8,34—1 ~ A 8ﬂ . ]
‘/ /Jr (Gugya Pl e ggatl(Be s s:y)dv d™ 7yl < Canlll @e(®) llsmaoomixrn, )

with C3z continuous in all its variables.
o+t Hb+1

78v8yf3 ®.and ———¢

For the second part, by integrating by parts in each y; on T , as 5.5 D
Y0y

are T-periodic in each y; , we have :

2R AN 2R = o 9 9P
be) o Aypedv d™ly = [ — . bedv d 1y,
/ /T (GugypPe) g p Rupedv Iy /0 Z/Tn 9y Boa P oy g e Y

o8+t o oftt .
We know that —— ; ot
e know that & oy = = dv ayyayp e S
2R 8/34-1 8ﬂ 2R a 8ﬂ—|—1 (9’3+1
pe) 2 Ayedv d" 'y = : pedv d"!
/ /T - Guays P gya Bupedv 4y /T /0 a0 By;007 %) oy e Y

— nl
- Z/TMQ ayaﬂ @)y,

ob+1
2:(u,0,y) = 0, indeed it comes from the third equation of (4.1) and the

But ———@,
! 3%‘5?/3(/)

7
continuity of all the functions ngs on [0;2R] x T ! | so we get
Y

2R S, - n—1 1, 9ot -
/ /n (Buayp P g Pt &y = _Zl/qrnli(ayjayﬂ%(“’ 2R,y))"d" 'y
]:

0.

IN

Finally, we have if m > n — 1,

A 22 ooy S Conll 2:0) i atnmeriy ) 69

with C3x continuous in all its variables.
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2 98
2l s e Pe(a) I
0% 08
For any 8 € IN"™', 0 < |8] < m , as aQaﬂgD€ISIIlCI(I x [0;2R] x T"!) and
oB+3 . o8+3 5
Oudv20yP Pe equals OvOyPoudv ve

5.1.4 Estimation of

we can proceed as before, so

d 0% 0

du | Wﬂ%(u) ||%2(0-2R]><'H‘n—1)
2R ob+2 op+1 o2 -
/ /T 50207 %) 3oays (Guan P 4 Y

2R ,3+2 aﬂ-i—l s 1
=2 Pe H ~€a » Uy A ~5 dv d" . .
/ /Tn 1 Ov20yP avayﬂ(‘] (e, 4,0, 9) + Ay@e)dv d" 7y, (5.9)

We estimate the first part of (5.9) corresponding to the first term in the sum beyond. By
(5.5) we have

o8+l . .
oays e (Pe o v,y)) = 5 (S 5 (H(Ge, u,v,9)).

Now by integrating by parts on [0; 2R], we obtain

o, .8 -
a_(‘]fa—yﬂ(H((psau’avay)))

2R ",
2 —T3 —i(aowitazg) L n—1
Z / /[rn 1 (2F) T (R a)e " oyPp (H(gos,u w, 2))dw d" "2 Pa(s, y)

o<}

— 27

6
=2 _/ (2R) 2T "7 [e ’(‘”"‘"R*‘”T)a—(H(sﬁs,u,w,Z))]?)R d" 'z a(s,y)
Tr—1 ay’@

al<;
; o+l
H ~
avayﬂ( ((pé‘iuiv?y))

where [f(w)]3% means f(2R) — f(0).
o8 -
But 8—yﬁ(H(¢E(u, 2R, 2),u,2R, z)) = 0, indeed H is a product of a function f by

aI/

v — ¢r(v), so for any v such that |v| < |8, W

(2R) = 0.

18



B

On another hand, a—yﬂ(ﬁ(@g(u, 0,2),u,0,2)) =0. Indeed
O (B, v,9), w0, 1))
ayz QOE b) ,y’ b) ’y
= (L) (s 0,9), 0,0, ) + (2 F) (@ (0, 9), 1,0, ) (o 30) (0, 0, )
- ayz 906 bl ay, 9 y 80 y y a 906 y

For the first term, ¢.(u,0, z) = 0 and we can invert in the expression

(H(0,u,v,y + hez) H(0,u,v,y))/h the limit in (§,v) = (0,0) and the limit in A = 0

corresponding to ;2 because of the regularity of H. As H(0,u,0,y) = 0 for any (u,y) (see

(3.3)), this first term vanishes at v = 0. For the second term, we already have seen that

(%@S)(u, 0,y) = 0 so it vanishes at v = 0. For higher derivatives we proceed similarly.
Hence we obtain

op+1 op+1
dvdy” OvdyP

Remark 5.2 : We can see here that we can’t get an estimation with higher derivatives

(JH (e, u,v,9)) = Jo( (H(@e,u,0,9))). (5.10)

than two in v. Indeed, in 582‘] H(pe,u,v,y) appearsatermaae (Pe(u,0,y),u, O,y)aggbg(u,(],y)
v

under the sum on |a| < © = and there’s no reason for it to vanish. Then if we keep it, the
estimation contains a factor of type c(é) which is not uniformly bounded as ¢ goes to 0.

Now we can write that if m > "—’1,

2R 8,3+2 ~ 8’3+1 B ;
/ /qrn 1 BUQayﬂ(p )J (avayﬁ (%,U,v,y))dv d" ty

H8+2 5+1
<2 20y ,3906 22 os2r)xTn-1) | Jor—m * vdy EY (905,“ v,Y) || L2((02R) xT-1)

o8+2 oB+1
<2 || 28 B@s ||L2(02R xTn= 1)|| Bvdy B (@s,u v ?J) ||L2(02R]><Tn 1

< C4R(|| Pe (1) |19 2(102R)x 71> 1)

because of the assumptions (3.6) on H, with Cyx continuous in all its variables. Indeed we
bound the second factor of the right member above as we have done in (5.6), by applying
the proposition 3.6 page 9 of Taylor [7] with f = @.(u,v) and g = %@E(u, v), it gives

aljl B al/z-f-l B
@%(u,v)w%(u,v) ||L2(1r"—1)

|
. 0 _
< ¢l @elw,v) llzoe(rn-ny | - @e(u, v) [lzm(zn-ay
0 . 5
+ || 5@ (1, 0) ooy || @elu, 0) lmmrn-r -
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We integrate the square of this inequality in v on [0; 2R], use that (A+ B)? < 2(A%+ B?),
thus we obtain by taking the square root and as /(A + B) < 1/(4) + 1/(B),

81/1 B 81/2+1
|| oyt (Pg(U, )a vy 906( ) ||L2([0;2R]><'11‘n—1)

. 0 .
< V@) || @.(u) ll=(ozrxrs-1) | 59 P (W) [l ot0i2m)x 771

0 . .
+\ﬂ2)0' | %%(U) ||L°°([0;2R]><T"—1) || @e(u) ||7-Lm,0([0;2R]><T"—1) .
Then as %@E(u) is in H,,1 and as if m > ”T_l, we have the embedding H,,; in L™, we
get
of+1
I g e :0,0) lsoamere < 2] 6.(0) )

with € continuous.
Now, we estimate the second part of (5.9) corresponding to the second term. We know
that we can commute any partial derlvatlves in v and in y; on ¢.. By integrating by parts

8 . . .
in each y; on T, as 55 507057 ©». and W% are T-periodic, we obtain

2 o°+? 9b+1 i §
/ /11: -1 anGyﬂ(pE a 8 /j( (%))dv a Y
2R N 8ﬂ—|—2 aﬂ+2
- ~s ~z~: m—1
/ /qpn L O 8v8y28y690 ) (avayiayﬁw Ydv d" Ty

2R n §8+2 , X
De ) dv d™
/ /Tn L O 81}8y18y5(p ) dv y

0P +2 s »
= _Z/ﬂl‘ . avay /3@6) (’U,,QR,y) - (W(ﬂg) (u,O,y)d” Y.

o o0 0°

The first term is less or equal to zero. For the second one, as — ﬂgog is in

ov 8yZ Jy
CHI. x [0;2R] x T* 1) we can write

o8+2 ob+2 ~ u Hp+3 5
(avayza ﬂSOe)(U,O,y) - (W@J(0,0,y) +/0 (W@E)(S’O,y)ds_

A

Then as @.(0,v,y) = J.¢_(v,y), and by the fact that we can commute the partial deriva-
tives, we have

ob+2
(W%)(

o+ v+l gb+1
€ H s + ——A De ,0, ds.
(8v8y18y5‘]¢ )(0, y)+/0 (8y,~8yﬁj (Pey 5,0,9) + 0.0y yPe(s,0,y))ds

u,0,y)




We have seen in (5.5) that we can commute .J, with the partial derivatives with respect
B+1 O+

to y, and 888 5 H(@.,u,v,y) is a sum Of(8§58 . H)(@e,u, v,y H3 —@e(u,v,y)
Wlth 0 +p < B+ 1 and Y |v| < \B| + 1. But we know that Pe(u,0,y) = 0 so

Hb+1
ay”%(u 0,y) = 0 and for the term (8yi6y5H) (P:(5,0,9),s,0,y) = (WH) (0,s,0,9),
. Atz
as H(0,s,0,y) = 0 it vanishes. Thus it only stays (%Jﬁﬁ_)(o, y). We show that
i0Y
§b+2 . A ob+2

—— _Jo. = 5

Ovoy;0yP avayzayﬂ
by proceeding as we have done in (5.10) because @_ is T-periodic, ¢_ is a product with

ob+1
a factor ¢ and 99,077 ©-(0,2z) = 0. Indeed by (3.4)
ob+1 o8+1 o8+ P LR

2)w

= . ———=¢+(0,2) = =——5—==-¢-(0
hence
3ﬁ+1 o8+t ob+1
—0,2) = m=——F=9-(0,2) = =——5—=¢+(0,2) =
by the corner condition ¢_(0,%) = ¢, (0,). Now as || J.f l2een-1<|| f || z2(rn-1y, We get
0P +2 of+2

Z/m (ovagays 7 0 = Z/Tn (Goanagp -V Oy

n a + ] 2 ~
Z || 8’Uayzay/3g0 ( ) ||L2(']]‘n71) S C

IN

by the assumptions on ¢ .
Finally, we obtain if m > ”T_l,

d i ~
o 1 505 573 2 0) [oamperssy < Cunlll 6:0) Nt aormrnry )~ (5:11)

with C4R continuous in all its variables.

5.1.5 Conclusion

Now it suffices to add (5.4), (5.7), (5.8), (5.11), and we can conclude that if m > 25,

d | . -
du | @e(u) ||g{m,2([o;23}x1rnfl)§ F(II pe(u) ||3-Lm,2([0;2R]x’]I‘n*1)’u)

with F continuous in both variables.
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5.2 bOlll’ld Of || 555(’11,) ||7.{m2 ([0;2R]x T 1)

Proposition 5.2 If m > %= | there exists a interval [0; Bg[ and a function
hg : [0; BgR[— IR such that

(1) ¢. exist on [0; Br[x[0;2R] x T}
(7i) we have the following estimation for all u in [0; Bg|

| @ (u) ||Hm,2([0;2R]x1rn—1)§ hr(u)

with hr continuous in its variable.

Proof:

We first apply the nonlinear differential Gronwall’s lemma, recall if f is C'(I) with I
df

real interval including 0, f(0) < M , T < F(f,t) , and F continuous then there exists
I(M) including 0 and a continuous function Gy : ¢t — G (t) defined on I(M) such that
ft) <Gut)on INI(M)NRT.
Hore () =I| ¢2(1) I, goagure sy » FO) =1 & 1y, goampene < () and I = L.
So there exists I(c¢(R)) including 0 and Gg : u — Gg(u) continuous and defined on
I(c(R)) such that || ¢.(u) ||Hm2([0 orxra-y< Gr(u) for all win I I(R) (R

Let [0 BR[ I(c(R)) NIR". Now we want to show that [0; B[ is included in I,. Let

I, =] — T7; T/ the maximal 1nterval of existence of ¢. with respect to its variable w.
Suppose that 7.7 < By , we set ¢? = max Gr(u) then we have
 0<u<T

T
- =] (for any T < 2T.").

| @ () |30 (02R)xTn-1) < € On [0; T 5

Let K =[0;2T.], ¢ > 0, by the theorem of Cauchy-Lipschitz, there exists T, x > 0 such
that the solution of

aésa) ("’ ~
* —_ = F, Pe, i y U )
" ( 0u / {jal<Lia0} (Beoduostionsor ™) ycsansor

with the initial value @.(ty) (Zo € K) satisfying || @. (o) [/#,.5(j0s2r)xT7-1)< €, exists on
[to; t() + Tc,K]-

Let v, (u ) e (u) for all uwin [0; T2 —T5K] | and v, (u ) solution of (*) with, at t = T, — 7%
V(T = T55) = (T = ") (indeed || ¢u(T2F — 155 [l qoampesn < ¢ )

Hence v, ex1sts on [T+ — TC .y I K], v is a solutlon on [0; T+ T° X1, which is contrary
of maximality of | — T.7; T+[ So we obtaln that [0; Bg| is included i 1n I..
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6 Existence of ¢
We can show now the following proposition

Proposition 6.1 If m > "> + 2, there ezists a solution ¢ for the problem (3.5) with
assumptions (3.6), and this solution is in C°([0; R] x T"~1).

Moreover, if m > max(n — 1, 2% + 2) then ¢ is in C°(I x [0; R] x T"7').

Moreover, for all 1 > 2, if m > max(n — 1,271 + 4 +1), and if for any 0 < a <1 -1,
0<b<I-1,0<y+ |y <m+1, DngngDgF is continuous in all its variables.
then ¢ is in C'(I x [0; R] x T 1).

Remark 6.1 : We suppose that n > 2, the results for the case n = 1 state in section 8.

6.1 Proof of the proposition 6.1

In the first step we prove the existence of a solution ¢, then in the second step we study
its regularity.

6.1.1 Existence of a solution of the problem (3.5)

We have shown in the proposition 5.2 that for any € > 0, @, exist on [0; Bg[x[0; R] x T
and Yu € [0; Br[, || @e(u) ||, 2(0;r)xT7-1)< hr(u) With hg continuous.
So on I = [0; Z2] we have || 3. () |3, »(jo;5]xT7-1) < max hr =c.

Thus for any u in I, @.(u) is bounded in H,,2([0; R] x T"~1). As this space is reflexive
, we can extract a sub-sequence @.(u) which weakly converges to @(u) in H,,o and
| &(w) |13, < liminf || Ge(w) [J3,,,< ¢ 50 @ is in L®(I, Hp 2([0; R] x T"71)).

By compactness of embedding H, 2 < Hmyp (see lemma 2.3 ), if (@.r(u)) weakly con-
verges to @(u) in H,, o , then (@ (u)) strongly converges to @(u) in H,, o . By interpolation
(see lemma (2.4) with v = %) | if 0 < k < 2 we have

k 5 5 2k
| Ger() = @e(w) lams = [ Ger(w) = @e(u) [l3,, o[l Ger () = @e(u) (3, ,

2—k

i3 ~ .
| @er () = @e(u) 13, o (Il @ () N3 + | @=(w) l34,5) 2

2—k

<l Gulu) — g (u) I3, , 20"

IN

From which we can deduce that (@, (u)) strongly converges to @(u) in Hy, .

In particular, if ¥k = 1, by inclusion H,,; C C° (see lemma 2.2 ) we see that (@ (u))
strongly converges to ¢(u) in C°([0; R] x T*71).

Then by continuity of H , we get (H(pe(u),u)) strongly converges to H(@(u),u) in
C°([0; R] x T"1).
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Now by observing that

| o H (e (w), u) = H(@(u), ) llco < || JoH (@or (w),u) — H(Ger(u),w) [Ico
+ || H(@er (w),u) = H(@(u),u) [|co
and that

| T H (e (), ) = H (@ (u),u) oo < || Jor = Id ([ gz, || H (@ (w), u) [loo
with || Jo — Id |l c(z2,m1)— 0 and || H(per(u), 1) ||co bounded, we can show that
Ja B (@o(u),u) = B(@(),u) in CO(0; R] x T ). (6.1)

Now we show the convergence of the partial derivative of ¢, with respect to v. We
have

0 . ~
I 5y @2 (W) Ny < 1 Ger(u) I3t < €

and H,,,; is reflexive so we can extract a subsequence (Z@.»(u)) of (Z@.(u)) which
weakly converges in M, (then strongly in H,, 11 by compactness of the embedding
Hini = Him—1,1) to @(u) € Hpy and || ¢(u) ||,., < c.
Now we verify that ¢(u) = 2@(u). Weakly convergence in Hy,1([0; R] x T"~!) implies
weakly convergence in L?([0; R] x T"!) | itself implies convergence in D'([0; R] x T ).
So on one hand, 2@.»(u) — @(u) in D'([0; R] x T*!) and on another hand @.»(u) — ()
in D'([0; R] x T""!) , hence 2¢.»(u) = 2@(u) in D'([0; R] x T*~!). By uniqueness of
the limit in D'([0; R] x T"") we get ¢(u) = 2¢(u).

In the following we see that 2 @.»(u) converges to 2@(u) in CO([0; R] x T"™'). It
suffices to apply the argument of interpolation:

for all p such that 1 < u < m let o defined by = o + (1 — o)m, we have

0 . 0 . 0 0 . - 0 . 0 . .
() = 5 f(0) I < () = B0 [y () = ) [,
9 _ 9 _ o 1-o
< e (u) = () s, (20
Thus 5 5
I 5, @ (1) = 5 -6(w) I, 0.
In particular, if we choose m —1 < puy<m,asm—1> ”T_l H, — C° s0
0 . 0 .
| Em2 (u) — %SD(U) [l co(jo;R1xTR-1)— 0. (6.2)
Similarly, we can show the following lemma that we need for the moment with
DY =A,:
Yy Yy
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Lemma 6.1 If m — |a| > "5+, Dg@(u) is in CO([0; R] x T ).

Proof of lemma 6.1:

For all |a] < m ,we have || Dy@e»(u) |4, a2 = < || Ger () || < €. So we can extract
a subsequence (that we will denote also ¢.» for more commodity) weakly convergent in
Hum |l 2 then strongly in H,,_|q,1. Arguing by uniqueness of the limit in D'([0; R] x T"~1)
, we show that its limit is Dy@(u).

By interpolation, for all 0<k<2,| Dyper(u) — Dyg(u) ||a,,
k=1,asm— |a] > "1 by embeddlng Hm—jal1 < C , we get

_ae— 0- In particular, if

|| Dyger(u) — Dy@e(u) ||lcogo;ryxn-1)— 0.

Then as C°([0; R] x T*~!) is a complete space, we get that Dy¢(u) is in C°([0; R] x T*").
A

By applying this lemma with Dy = a By7 and adding on ¢ = 1,. — 1, we obtain that if
m>2+ 22 Ay@(u) is in CO([O, R] x T~ D). We will deduce from these results that ¢
is a solution of the problem (3.5). Indeed,on one hand, from the continuity of %ngbsu (u)
we have

a%gbgn (u) — a%gésn = [y aZZ @e»(0)do. Therefore we use the theorem of dominated
convergence of Lebesgue. By the convergence of Ay@.»(0) and (6.1) we can say that, for
all o in I, %@E» (0) = JoH(per(0),0) + Ay@er (o) converges to H(@(o),0) +Ayp(o) in
C([0; R]2>< T 1).

And || 5232 || Leo(r,00(0; R 1))= max | Joo H(3:7(0),0) + Ay@er (0) [looqo;mxrn—1< Er
which is in Ll([O ul).

So f aua @E da — fo <[7 0),0) + Ayp(o)do in C°([0; R] x T"'). Furthermore,
On another hand by (6. 2) = gag ( ) 25:5(0) = Z2¢(u) — 2¢(0) in CO([0; R] x T"1).
Hence by unlqueness of the hmlt in C°([0; R] x T ') we get

26(u) = 26(0) = [ A(§(0),0) + A,5(0)do.
Then we differentiate Wlth respect to u and we obtain
0 = -
5ugy P (v, y) = H(P(u, v, 9),u,0,9) + Ay p(u, v, 9). (6.3)

We notice that @¢(u,0,y) = 0 is given by @.»(u,0,y) = 0 and the convergence of @.»(u)
in C°([0; R] x T 1). A
For the last equation of the problem (3.5), we recall that ¢.»(0,v,y) = J»@_(v,y) , and
as

1 Jo@- =@ lloo < || Jor = Id || cquz,ml| §- oo
with || J. — Id | c(z2,m1)— 0 and || ¢ [|co finite, we can show that

Jop — ¢ in C°([0; R] x T 1),
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Now with the convergence of ¢.»(0) in C°([0; R] x T*~!) and the uniqueness of the limit

we can conclude that ¢(0,v,y) = ¢_(v,y).

6.1.2 Regularity of ¢

Now we are going to show that ¢ is C°(I x [0; R] x T"!). To reach this goal, we will
show that @ is in C%'(I, M, 1([0; R] x T"!)) with m' > (n — 1)/2 By the continuity in
v of 2 50 % > We can write :

Pl hyv9) = G 0) = s h0) = G0, + [ 5B+ hoyy) = o)

Let m' =m/2 , as we have seen beyond ¢(u + h,0,y) =0 and @(u,0,y) =0, so

| &(u+h) = @) |4, (0;rxT-1)=]] / 6v ¢(u+h,0,y) — ¢(u,0,9))do ||n,, , (o;r)xTn-1) (6.4)
Here we need the following lemma, the proof of which can be found in appendix B:

Lemma 6.2 Suppose that f is a function of (s,y) such that for all0 <v <m', Dyf is
in C°([0; R] x T™ 1Y), then

v 3
I [ 5605 I onsy < (B + 1)1 50539) ey
0

Here by using lemma 6.1 with o = v, we get that if m—m' > (n—1)/2ie. m >n—1,
then for all 0 < [v| <m', Dy@(u) is in CO([0; R] x T* ). So we can apply the lemma
6.2 on 2@(u+ h,s,y) — 23(u, s,y), and by observing that
| f(s, C‘J) ||7-Lm, J(osrxr- ) <[l f(s,¥) ||7-Lm, L([0;R]xT"-1) We can write that

~ 8 ~
|| /0 %(p(u + h, o, y) - %QO(’U,, g, y)dO’ ||’Hm,,1([0;R}><'H‘"—1)

3 0 9]
< (R2+1) | —go(u+ h,o,y) — a—@(u 0, Y) 4, ,(osr)xTn-1y - (6.5)

On another hand we know that for all 1 < y < m,

0 _ 0 .
I %%” (u) — %‘P(U) ||H,L,1([0;R]><T"*1)_) 0.

Hence

0 . d .
I w(U+h) 5,7 Il = lim | —905 (uth) = o @er () [l

e”—0

Recall that a a e is continuous in all its variables (u,v,y), so we have
9 uth g2
I o) = 5@ I =l Il [ 5 0) dor
Then we need the following lemma, the proof of which can be found in appendix B:
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Lemma 6.3 If (u,v,y) — f(u,v,y) is a function such that for all0 < |v| < p, 0<a <1,
DDy f is continuous in all its variables, then

u+h ut+h
|| / F(0)do [, < / | £(0)do |, , do.

Now we apply the lemma above to f = %;,955” , SO we obtain

b o uth 92
—@ — = < I —— D .
| 5o@uth) = go o) ., < Jm |l 5i500(0) In, do

But

5 o )
I 50507 (@) s =l Jo H($2(0), 0) + Ay Ger(0) [l

<l H(@=(0),0) lar + | Ayer(0) Nl
< cr(ll 9 (9) [z, o) (A || 92 (9) [l20,,)+ || @ (9) lltusa,n

with || @e» (0) || zoe, 0, || Per () |15 | §er(0) [121,40, bounded on I. Hence,

82
| m%”(”) 134, < Cr-
Thus, we have with 4 = m' (as n > 2 and m' = 2 = lmax(n — ;%2 + 2) we get
1 <m' <m)
o B o B ) u+h_ .
I %SO(U +h) — %SO(“) 94,1 (f0; RIx TR -1) < 61,,13) crdo = crh. (6.6)

From (6.4), (6.5), (6.6), we can deduce that

~ ~ 3 _
| ¢(u+ k) — @(u) ([, (rRxTe 1)< (B2 4 1)Cgh.

It means that ¢ is in CO (1, Hpp 1 ([0; R] x T 1)).

But COM(I, Hp 1([0; R] x T* 1)) € CI, Hyw 1([0; R] x T* 1)), and as m' > (n — 1)/2
i.e. m >n—1we have C°(I,H,v1([0; R] x T"7)) C C°(1,C°([0; R] x T !)) = C°(I x
[0; R] x T"!), which allows us to conclude that

¢ e C'(I x [0;R] x T* ).

Now we show that under certain conditions @ is in C*(I x [0; R] x T*~'). We start by
getting 23 in C°(I x [0; R] x T"!). As H is continuous in all its variables, we have

Oudv
(u,v,y) — H(@,u,v,y) is in C°(I x [0; R] x T"'). So it suffices to prove that A,¢ is
continuous. Here we introduce a lemma because we will need it later too. Its proof can
be found at the end of the section.
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Lemma 6.4 Ifm — |a| —2> 251, D2 is in CO(1 x [0; R] x T"71).

We apply this lemma to A, and finally, we obtain that if m > max(n — 1, %5+~ L1 4)
H(@) + Ayp is in CO(I x [0; R] x T"~1). Now by the equality (6.3), we get

2

5ude? € C°(I x [0; R] x T ). (6.7)

Then we show that ¢ is in C?(I x [0; R] x T"!). First we can deduce from the result
above that %(p is contlnuous in all its variables. Indeed

0 . 0 . vo9?
%Q@(U,U,y) = %QD(O,v,y)-i- o 8U8U¢(S’U’y)d8
0 . vo9?
= 5,7 - (v,y) + ; m@(&v,y)ds- (6.8)

0

By the definition of ¢_ we see that 2¢_(v,y) = 2¢_(v,y) — 2¢(0,0,y) = Z¢_(v,y) —

2o (0,y). As p_ is C™™, we get
ggb € C'(I x [0; R x T* 1)
ov ’ '

Now by this continuity of 2 5, we can write that

. . Yo .
o(u,v,y) = w(u,O,y)+/ (f),—so(u,s,y)dS
0 (v

Y0
= /0 E o(u, s,y)ds. (6.9)
We differentiate in u and with (6.7), we get
0 Vo2
—Q = D . 1
EMACR)) /0 EEMACEROLE (6.10)

So

8~ 0 . m—1
56 € OO X [0; R x T*).

If we differentiate this equality in v, we obtain

0 0?
(%auga - oudv

¢ € C'(Ix[0;R] x T ). (6.11)
For derivatives in y; of first and second order we just have to apply the lemma 6.4.
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We differentiate (6.10) in y; and as ¢ satisfies the equation (6.3), it gives

62
D H Ayp ds. 12

If 5 a H and H are continuous in all their variables that it is the case by the assumptlons
on H and if 5~ 6 3y; 18 continuous in all its variables that it is the case if m > max(n—1, 52+
5) we have 5~ (H(so,u 5,9) + Ay@(u, 5,9)) = (- H) (@, 5,9) + (5 H) (B, u, 5 y) <p+

39; 2N, p(u, s, y)) continuous in all its variables. So we can commute [; and ay and
conclude that

2

0y;0u

G eCIx[0;R] x T 1).
By the continuity of 2 50 We can write
- - 0
Pluv,y) = @0,0,9)+ | 5-0(s,v,y)ds
0

. v o
= @—(U,y)—i-/o ﬂgo(s,v,y)ds.

2 ~ . .
As we have shown that %g@ is continuous, we have
2

0 0 vop?

— = —Q_ , ds. 6.13

ayiw(u,v,y) a.7 (v, 9) +/0 8%8“90(3,%11) s (6.13)
We differentiate this equality in u, thus

0’ 02 0 1
b= b 1 ; ™).

For —gp we differentiate (6.8) in y; and as we have done for
1fm>max(n—1 —1 +5)

jzucﬁ we obtain that

2

0y;0v

¢eC'(Ix[0;R] x T 1).

Now we differentiate the equality (6.9) first in y; , then in v, hence

© 52 O € C%I x [0; Rl x T 1)
auay,-*" N 8y,~80(p ’ '
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It remains to show that 3322¢ and ;2@ are continuous. For this we will see that we

need the continuity of Ayga and so we must take m > max(n — 1,21 +6) . We start
by differentiating in u the equality (6.10) and as ¢ satisfies the equatlon (6.3), we obtain
82

8u2<p— 5 / H (P, u,8,9) + Ayp(u, s y)ds)

We notice that 2 (H(@,u,5,y)+0y@(u, 5,9)) = (ZH) (B,u, 5,9)+(5H) (5, u, 5, y) 25+
Ay<p(u s y)) “The both first terms of the right member are continuous by the assump-

tlons on H and the results above. For 2 5= Ay @ we look at 26 @. If m > max(n—1, %1 +6),

a—;?Ayga is continuous and by the assumptions on H, we have the continuity of

T G 5) + D2, 50)) =g B, 50) + (o) (0, 5.9)
ayz QD,’U/ S y ySO u s y ayz QD,U, S’y 593% QO,'U/, Say 6%%0
2 . o P o .,

6 ~ 82 82

So by differentiating the equality (6.12) in y;, we get

P & 5 ;
8y28u = /0 ayZ (H(QD, u, s, y) + A?/SO(U’ S y))dS

Hence

3
@€ C'(I x [0; R x T" ).

Oy20u
Now we differentiate the equality (6.13) first in y;, then in u, and so we obtain
o0? 03
5€COI x [0;R] x T" ).

It suffices to add on y; to get the continuity of Aygo Finally we can say that if
m > max(n — 1, %% + 6),

2
§2gaec°(1><[o R] x T"1).

We proceed similarly for 2 2<p (we have supplementary terms, a 2g0 and ay2 55 P—
which are continuous by assumptions on ¢_). If m > max(n — 1,2 T +6),

62 - 0 -1

w(ﬂEC (IX[O,R]XT“ )
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At the end, all the results above allow us to conclude that if m > max(n —1, "T_l +6),
¢ e C*(I x[0;R] x T" ).

For the class C* we follow the same method and so we take m > max(n—1, "T_l +1+4),
but we need also greater assumptions on H and so on H, that is to say
forany 0 <a<l—-1,0<b<I-1,0<y+ |y <m+1, DZDZD;’DgH continuous in
all its variables. This is equivalent to the assumptions on F:
forany 0<a<1-1,0<b<1-1,0<~vy+|u/<m+1, DD DyDHF is continuous
in all its variables. o
Proof of the Lemma 6.4:
In the proof of the lemma 6.1 we have seen that || Dy @ (u) — Dyd(u) ||, ,— 0. So
we can write

I Dy@(u+h) = Dye(w) (s, o, = lim | Dy%”(quh) Dy@er () [ -an

= Jim | / D5 5 (0) o I,
because of the continuity in all its variables (u, v,y) of 2 2a Dy Per-
Hence by lemma 6.3 and by taking the limit, we obtam

u+h 0
| Dy@(u+h) — Dyo(u) o, _n_p, < lim I Dy 5?2 () oy 20 o

¥
e”—0 u

But by the continuity of ‘9 D" y 5uPe» and the fact that we can commute the partial
derivatives, we have

0 0
Daa P (0,v,y) = DO‘(9 P (0,0,7) / ~E,, (0,s,y)ds.
The first term of right member vanishes (indeed the third equation of the problem (4.1)
gives that ¢.»(u,0,y) vanishes, so by differentiating in u and in y, it also vanishes). By
using the second equation of the problem (4.1) and the result (5.5), we get

a 9 _ s QIT( > a ~
Dya—uwgn (o,v,9) = /O Jo Dy H (e, 0,8,y) + (Dy Ay) v (0, 5, y)ds.

Now, we take the norm H,,_|q 2,1 of the both members and we apply lemma 6.2 on the
right one, so

0
| D55 20(0) It

IN

(R? + 1) || Jo Ay H(Ger(0),0) + (D Ay)Ger (0) 13,101 a0
< (B2 + 1)1 AyH (@2(0),0) 310150 + | 22(0) 340
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Then by the assumptions on the regularity of H, we obtain

0 3 . - N
I Dy 5@ (0) It o 20 < (B2 + 1) (c(l| - (0) [l 0) (14 | e (0) 4y 10,0+ | 8(0) [l )
<

CR

because || Ger(0) [[z, 0, || Ge2(0) 1, oy 00 | G2(0) [1,0 are bounded on 1.
Hence

u+h
| D330+ h) = D33 Iy oy < lim [ cndo = cqh
It means that D$@ is in C*'(1, %m,w,g,l([o R] x T~ 1)).
But CON (I, Hn—jaj—2,1([0; R] x T 1)) C C°L, Hpp—ja)—2 1([ R] xT" 1)), and as m — |a| —
2 > (n—1)/2 we have C°(I, Hm—|a-2,1([0; R] x T 1)) c C%I,C%0; R] x T 1)) =
CO(I x [0; R] x T* '), which allows us to conclude that

Ds@ e CO° x [0; R] x T"71).

7 Existence and uniqueness of the solution of the
problem (1.1)

7.1 Existence of ¢

We can show now the following theorem

Theorem 7.1 If m > max(n — 1,%t + 4), and

(i) F:(0,t,z',y) — F(0,t,z',y) satzsﬁes that for any 0 <a<1,0<b<1,
0<~y+|pu/<m+1, D?DnggDéfF is continuous in all its variables

(ii) @i, are of class H™"®, and ¢, ¢ satisfy the corner condition:
©+(0,y) = ¢-(0,y).

(11i) There exists a real T > 0 such that F, @, are T-periodic in each y;.

then for all real R > 0 , there exist some reals R' > 0 and R’ > 0 such that there ezists
a solution ¢ for the problem (1.1) in the domain Q = {0 <t—2' < R, 0 <t+2a! <
R, (2?,..,2") e T} J{0<t+2' <R, 0<t—2a!' <R, (22 ..,2") € T" '} where
T~ is the torus of dimension n — 1 and of length T in each direction, and this solution
is i C°(Q).

Moreover, for alll > 2, if m > maz(n — 1,252 + 4+ 1), and if for any 0 < a <1 —1,
0<b<I—-1,0<y+ g <m+1, DngngDgF s continuous in all its variables,
then ¢ is in C'(Q).
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Proof of the theorem 7.1:
In the first step we prove the existence of a solution ¢ satisfying equation (3.1), then in
the second one we study its regularity , after that we show that we can do the same along
N,.
7.1.1 Existence of a solution ¢
We set I = [0; R'] and
a u
o(u,v,9) = ¢(u,v,9) + o1 (w,y) + (5-¢-(0,9) +/ H(p1(5,9),5,0,y) + Ay (s, y)ds)v(T.1)
0
We notice that
o(u,0,y) = &(u,0,y) + @4 (u,y) = o1 (u,y)

and

(0,0,) + £+ 0.5) + (o (0,1))r

ASY!

0(0,v,y) =

= ¢_(v,y) +¢(0,y) + (—UQD—((],:U))U

by the definition of ¢ given in (3.4).
Now as we know that

0? .
5 il A
Sude? (P, u,v,y) + Ay

and by the regularity of the functions H, ¢, ,¢_, we obtain
82

Sudu? = H(p,u,v,9) + Ay@ + H(py (u,9),4,0,9) + Ay (u,y).

By the definition of H given in (3.2) we get

62
55y P (W v:y) = H(p,u,0,9) + Ayp(u, v, ).
2 82
To obtain ¢ solution of the problem (1.1) it remains to show that p= p. we
Oudv Jvou

differentiate the equality (7.1) first in u, then in v, hence

0? 0?
Bvau(‘p - ovou

Qa + H(§0+(u7 y)7 Uu, Oa y) + Ay‘P+(Ua y)
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But we know (see (6.11)) that if m > maz(n — 1, 251 + 4),

0% 0?
avau“) (?u(%qJ
= H(¢,u,v,y) + Ayp.

Thus we have
82 82
dudv’ ~ dvou”
which gives that ¢ is a solution of the problem (1.1).

7.1.2 Regularity of ¢

To study the regularity of ¢ it suffices to study the regularity of (¢, p_) = ¢4 (u,y) +
(Z20_(0,y) + [, H(v4(5,9),5,0,y) + Ay (s,y)ds)v because we have already results
about the regularity of ¢ by the proposition (6.1).

We start by the derivative of first order of 6(p, _). We have

0 0
%6«04-’ SD—) = %@4— (U, y) + (H(SD-F (U, y)a u, Oa y) + Ay90+ (’LL, y)dS)U

and
0 0 u
~0(p4,0-) = 7-0-(0,9) +/ H(p4(5,9),5,0,y) + Aypr(s,y)ds
ov ov 0

which are in C°(I x [0; R] x T*~!) by the assumptions on the functions H, ¢, cp_. At
least, these assumptions on the functions H, ¢, ¢_ allow us to commute fo and 47-, so
we can write

2

8o ) = el00) + (oo O+ [ () ouls0),5,0,0) f 0. (5,9)

i

0
2Dy (s, y)ds)v.

o -
—H s,v),s,0,y)+
) (+(5,9),5,0,9) o

0y

So 3 6(g0+,<p_) is in C°(I x [0; R] x T"71).
For the derivative of second order of 6(¢,¢_) we get similarly

+(

S8 = oo O+ [ () s(o.0). 5.0 5 510
ayza/v (ID+’QO— - ayzavw— ’y 0 80 S0_|_ y ’y ayZSO‘F ’y
0 - 0
+ (a—yzH) (QD-I-(S’y)a S,O,y) + 8—yiAyQ0+(Say)d8
2
= aUayZ(S(QO_F’SO_)
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526 0) = oo ) + () (+(5,0),5,0.0) oo 5,0)
ayzau P+,P-) = ayzau@‘F u,y BY) P+15,Y),8 Yy a P+\SY

+ (i
yi
82
- auayz 5(904“? QO,)

~ 0
H) (Q0+(S, y)7 S, O: y) + a_y_AyQD-i—(sa y))’U

62
oudv

5((10-1-7(10—) = H((p+(u,y),u,0,y)+Ayg0+(u,y)

82
avaué((p-H (= )

82 2

0 0
@5@0%@0—) = @%L(U y)+ ((aeH)(%L(U Y), U,O,y)£s0+(u,y)
0 0
—H —A .
+ (5 H) (94 (), 4,0,9) + - Ay (u,9) v
We can see that they are all in C°(1 x [0; R] x T"™!). Now

62
W5(€0+,€0—) = 0.

T ottonen) = Zrontwn) + (oo 0.+ [ (o) (ou0),5,0.0) 25,0
ayg P+, P- _ayf(p-f— Y ayzgav(p— 'Y 0 802 P+{5Y), 5 U,y ayzgo—f— 'Y

GO H) (1 (5,0),5,0,) o 0,92
83},80 Y+8,Y), 8, 7y)ayi§0+(say) (80 )((P+(8 y) s, y)a 2gp+(5 y)
+ 6—2 H)(¢+(5,y) sOy)i (s )+(6—2H)( (s,9),5,0,7)
aaayz +\23 Y )s 95 Yy ayzgp-k 'Y ayzz ©wil8,Y),8,0,y
2

+ —A s,y) ds)v.
57 e+ (5:9) )
So 8—25(<p+, ¢_) is also in CO(I x [0; R] x T*1).

Thus we can conclude without addlng assumptions, that if m > maz(n — 1, % +6)
the solution ¢ is in C?(I x [0; R] x T""!). We come back to the variables ¢ and ' by the
fact that ¢t = u + v and ' = v — u, so we get the same regularity.

We proceed similarly for higher derivatives and we see that the assumptions necessarily
to obtain ¢ of class C' are not stronger that those necessarily to obtain ¢ of class C'.
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7.1.3 Conclusion

So we have finally the existence of the solution of the problem (1.1) in a one-sided future
neighborhood of a compact ([0; R] x T"~!) C N_ where [0; R] is as large as we want.

To obtain the existence of the solution of the problem (1.1) in a future timelike neigh-
borhood of a compact ([0; R] x T*~!) C N, it suffices to exchange the role of u and v and
to apply the same method.

7.2  Uniqueness of ¢

For the uniqueness of the solution ¢ we take a piece of time to examine the geometry of
the problem.
Let 7 = %, 7 € IR"! and P the point of coordinates (7 + R, —7 + R', ) in IR"™'. We

consider J, a part of the past light cone issued of P, precisely
Jp={t,ay) e R")0<t<7+R, (t—(+R)) =" —(—m+R)) +y— i’}

We recall that N, is the hypersurface N, = {(t,z',y) € R""'/t+2' =0, t > 0}. It is
easy to see that J, () NV, is a part of the parabola P of top P'(r,—7,7), P = {(t,z',y) €
R /|y — §|*> = 4R'(z' + 7)}. We call Up the set J5 intersected with the future of N,
and the future of N = {(¢,z',y) € R""'/t —z' = 0, ¢t > 0}. We can visualize the
situation by the following figure .

N_

07
g

L0
g,

i

V/////,

/Y,

U

We're going to prove the uniqueness of the solution of the problem (1.1) found be-
fore, in Up. Then we call Up,+ the set Up intersected with the past of the hypersurface
{(t,z',y) € R""'/t = '} which we denote simply {t = 7'}.
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Let 1, g2 be two solutions of the problem (1.1). We set ¢ = ¢ — ¢, so we have

DQO :F((plvtaxlay) _F(Q027t7x1:y)
w‘N+ =0
¢ln. =0

As 2 is continuous (recall that 6 is the first variable of F) and ¢1, g5 bounded (indeed
(u,v,y) = 1(u,v,y) and (u,v,y) — pa(u,v,y) are C? so continuous on [0; R] x [0; R'] x
T" 1), we can write that

oF
|F(Q01(t,$1,y),t, xlay) - F(@Q(ta .’L‘l,y),t, xlay)‘ < || Y1 — $2 ” max || %((1 - S)Qpl + SQOQ) ”

0<s<1

IN

cllell

Furthermore

Ol <cllell. (7.2)

To prove that ¢ vanishes in Up, we first estimate for any 0 < 7/ < 7 4+ R’ some energy
E(7') of ¢, namely

1
B(r') = / L@ +Ve?)as
Up,1 Nft=r'} 2

0 0 — 0
where [Vl = (37 + (5,0 + 2 (5,)"
i=1 ¢

Then we show that E(7') vanishes for any 0 < 7' <71+ R

For this we use some notions of physics sciences and so introduce a tensor, called
tensor of impulsive energy. As it is usually denoted in differential geometry literature, we
set

X =Y X",
w

where {0,} is a basis of local coordinates system of dimension n + 1.

We denote V, a covariant derivative with respect to d, and V# := )" 9"V, where 7 is
the diagonal matrix of dimension n + 1 of diagonal : (—1,1,...,1).

Now we consider the tensor T acting on one-vector field, namely

T(X) = Y. T%X*9,
[TRY
. 1 a
with T = VroV,p— 5((;V PVap) + %) 0",
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(0*, is the Kronecker symbol i.e. §#, vanishes if y # v and equals to 1 if = v).
Notice that for 4 = v = 0 we obtain

1
T = —(09) = 5(— 00) + (009)’ + oo+ (B, 0) + )
1
= —5 (00 + (00, 9)” + o+ (Ba,0)* +¢”)
1
= 5(90 +[Vel).

By the theorem of Stokes we know that, for every open set 2,

/BQT(X)dS=/de(T(X))dV

where dS is the infinitesimal element of surface on 92, more precisely 7(X)dS = Z TH(X

dV 1is the infinitesimal element of Volume on {2, and as we will take a constant vector X
(more precisely X = dy), div(T z V. (ThX")

Therefore we calculate V, T*,.
1
V.T" = V,(VFeV,ep — 5((2 V*oVap) + %)%
1
= (Vu.V*0) Vo + VFp(V,V,0) — 55“,,%((2 VeoVap) + ¢%).

Now we sum on u:
Z vV, = Z (VuV“ Ve + Z VHe V V,,go) Z vawag@) V.
I

For the first term of the right member of the equality above, we can notice that
(D VuV*) Vo = (D 1" VuVap) Ve = OV,
1 e
For the second and third one, we have
Z Vi (VMVVSD) = Z n“ava(p(vuvuq))
ot

and

1
=5 2 (1" (VoY) Vo + 7"V ,0(VVagp)).

JTRe!

1 a
_EVU(;V QOVQQO) =
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Then if ¢ is of class C?, it is easy to see that

Y VT = (0p - ¢) Ve

u

In particular if v = 0,

Y VT = (Op — ) Vop = (Op — ¢)digp. (7.3)

I

We apply the theorem of Stokes with {2 = Up,,. By looking the intersection of Up s
with the hypersurfaces N_, N, and {t = 7'}, we can decompose OUp . in four parts as it
follows :

Up, = (Upr NN_) U (Up N N3) U (Up N{t=7"}) UC,

where C,+ is the only curved part of OUp .
As ¢ vanishes on N_ and N, , when we integrate on 0Up, it only remains the integrals
on Up, N{t=7"} and on C,.
For the integral on C,., we integrate on characteristic hypersurface, by elementary lor-
rentzian geometry, we know that integrate on a characteristic hypersurface is equivalent
to integrate only the component in isotropic vector tangent to this characteristic hypersur-
face, but Y7, Y*Z” > 0 when Y, Z are timelike or isotropic future directed vectors.Hence
this integral is less or equal to zero.

For the integral on Up,» N {t = 7'}, as the time is constant, all the elements of surface
dS,, vanishes except of dSy.

So we obtain

/ T%dS, > / > V. Thdv
Up 1N {t=T"} Up.1

E(r) < - / > V. Thav.
Up

R

On another hand by using (7.3) and (7.2), we have

| (VT)(X)av| = | (Op — ¢)dpdV|

Z'{P,'r’ up,TI

< / clol|BupldV

!
5T

1
< e leP+lowPav
I/{P,T/
1
< gof lef+ vy,
2 Up 1

39



By the theorem of Fubini, as Up,» = [U : (Up N {t =s}), we get
se[0;7

1 1 [
se | leiveray = Ge [ ([ jep+|vePas)as
Up 1 0 UP,T/ﬂ{tZS}

= c/OTI E(s)ds

Finally for any 0 < 7/ < 7+ A,

!

E(f) <c /0 " B(s)ds.

Then we set h(t) = e~ fo s)ds. We have h/(t) = —ce=* fo (s)ds+e E(t ) < 0 so for
anyOStST—i-)\, h(t) < h(O) = 0, it means that for any0<t<7'+)\ 7 E(s)ds < 0.
Hence E(t) < 0 almost everywhere on [0; 7+ A], and as E is continuous, we can conclude
that for any 0 < ¢ <7+ A, E(t) = 0. This implies that ¢ vanishes almost everywhere in
Up ., then everywhere by continuity of .

Hence if the functions F), ¢, ¢_ are periodic in y, we get the uniqueness in %VR, where

Ve ={0<t—2a' <R 0<t+z} <Ry (2% ..,2") € T"'}U{O0 < t+2! <
R, 0 <t—z' <Ry, (22 ...,2") € T" "'} (R} and RY are the reals found at each R see
theorem 7.1). Notice that L}%VR is a set of length 7" in each y; with a transversal section

in (u,v) which looks like a strip limited from below by N, U N_, limited from above by
an hyperbola, we can visualize it by the following figure.

We resume all the results in the following theorem :
Theorem 7.2 If m > maz(n — 1,% 4+ 4), and

(i) F:(0,t,x',y) — F(0,t,z',y) satisfies that for any 0 < a <1,0<b< 1,
0<~+|ul<m+1, DiD°DjDUF is continuous in all its variables

(ii) @i, are of class H™S, and ¢, ¢ satisfy the corner condition:
©+(0,y) = ¢-(0,y).

(i1i) There exists a real T > 0 such that F, @, are T-periodic in each y;.
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then there ezists a unique C°-solution ¢ for the problem (1.1) in one-sided future neigh-
borhood L}%VR of the initial data hypersurfaces N, and N_ .

Moreover, for all 1 > 2, if m > maz(n — 1,25+ + 4+ 1), and if for any 0 < a <1 —1,
0<b<I—-1,0< v+ <m+1, DngngD?‘jF is continuous in all its variables,
then ¢ is in C.

Remark 7.1 : We have worked with the same periodicity 7" in each y;, but we can pro-
ceed similarly with different periodicities in each y;, the functions ¥, (v,y), and < ¥,, f >
will be a little more complicated, but we will get the sames results.

Now we remove the assumption of periodicity in y. We can consider two cases: first
Y = RR™!, then Y open set strictly included in IR* . If H and ¢_ are defined on a
set Y = IR"! in their variable y (which is equivalent to F, o, ¢_ defined on Y = IR"!
in their variable y ), we can work in a torus T" ! of length 27" in each y;, multiply the
functions F, ¢, ¢_ by a cut off function in y equal to 1 on the torus T* ! of length 7" in
each y; strictly included in T'™ ', vanishing outside of T'"'. Then if we replace T*"! and
T by (T')""' and 7" (length of T') in all the arguments, we get a solution on a one-sided
future neighborhood Q7 of N, and N_, of length 7" in each y;. We do it again with a torus
T'"~! of length 47T in each y; strictly including the torus T'" ', we get another solution
on a neighborhood 21, but by the uniqueness it is the same on the intersection of both
neighborhoods. So we have a solution on €27 U €yp. By induction we construct a solution
on U Qokqp.

k€N

Now if Y is an open set strictly included in IR" !, we can consider some torus T" ! CC
(T")»! C Y (where A CC B means A C B). We multiply the functions H and $_ by a
cut off function equal to 1 on T"~! and vanishing outside of (T")"~! and we replace T
and T by (T")"~! and T" (length of T') in all the arguments, so we get a solution. We can’t
enlarge the torus as much as we want, but we can remark that when we consider again the
intersection of the past light cone issued from P(u,v,q) (u as large as necessary) with N,
it’s a part of parabola P, which limit when v — 0 is a segment {(s,0,%);0 < s < u}. This
means that for any v > 0, we can find a v > 0 small enough such that the intersection
of the past light cone issued of P(u,v,7) with the future of N, U N_ is a set of points
Q(u',v',y") with 3 in T"~'. So by eventually reducing the thickness of the neighborhood
obtained in theorem 7.2, the well known uniqueness of a solution of a wave equation in
the past light cone of a point assures that the solution obtained in our argument is the
right one. Hence we will obtain a neighborhood of N, U N_ which becomes thiner and
thiner when we reach the boundary of each connex component of Y. So we finally get the
following theorem:

Theorem 7.3 If m > maz(n — 1, +4), and

(i) The functions F,@,, o are defined on R™ ' in y.
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(ii) F:(0,t,2',y) — F(0,t,x',y) satisfies that for any 0 <a <1, 0<b< 1,
0<y+|u<m+1, DDLDJDIF is continuous in all its variables

(iii) o4, _ are of class H™® and ., p_ satisfy the corner condition:
©+(0,y) = ¢-(0,y).

then there ezists a unique C°-solution ¢ for the problem (1.1) in one-sided future neigh-
borhood of the initial data hypersurfaces Ny and N_ .

Moreover, for all 1 > 2, if m > maz(n — 1, ”T_l +4+1), and if for any 0 < a <1 -1,
0<b<I—-1,0<y+|u<m+1, D?DngngF is continuous in all its variables,
then ¢ is in C'.

8 Case R!f!

We consider the same problem as (1.1) with n = 1, namely

Dop(x,1) = F(p(z,1),z,1)
olv, = o4 (8.1)
el =

where N, = {t+2 =0, t >0}
N_={t—2=0,t>0}
»?
“or o

We proceed similarly as we have done for the case IR"™. Indeed, we first change variable
(t,x) to (u,v), then we deal with a new equation in ¢, and we approximate spectrally
@ by ¢.. But in order to estimate || @.(u) |5, , we work with the norm H?([0,2R]) =
W?22([0,2R]). The estimations are similar but considerably simpler and we need weaker
assumptions on the functions F, ¢, ¢ . We obtain the following theorem.

Theorem 8.1 For all | > 2, if F is of class C'=' , p,,¢_ are of class C*, and ¢, ¢_
satisfy the corner condition:

904—(01 y) = p- (0, y))

then for all real R > 0 , there exist some reals R' > 0 and R” > 0 such that there ezists a
unique solution ¢ for the problem (8.1) in the domain Q ={0<t—x <R, 0<t+z <
R H0O<t+2 <R, 0<t—x< R’} and this solution is in C*().
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A Appendix

A.1 Proof of H, ; Hilbert space
We set for any f, g in Hpm ([0, 2R] x T 1),

2R
(f,9)= Z / / 1(DSDZf)(D;fD?'jg)dv d" .
0<a<k YO YT
0<fv[<m

(.,.) is a symmetric and positive definite real valued bilinear form. We show that #,, is
complete for the associated norm || f ||= (f, f)2.

Indeed, let (u,) be a Cauchy sequence in H,,x([0,2R] x T""!), namely for all 0 < a <
k, for all 0 <| v |[< m, (DgDyuy) is a Cauchy sequence in L*([0;2R] x T""'). As
L*([0;2R] x T ') is a complete space, we know that for any 0 < a < k, any 0 <| v |< m,
(Df}DZun) converges to a L?-function g,,. It remains to state that g,, = Dy Dyu. We recall
that (DgDju,) converges to (DgDyu) in D'([0;2R] x T*~!') (we denote by D' the set of
real-valued linear function defined on D the set of smooth compact-supported functions).
On another hand, for any ¢ in D([0; 2R] x T" 1), by the Cauchy-Schwarz inequality it is
clear that

| von I(DﬁDZUn — 9ar)®| || DyDytin, — gaw |22 (02m) x| @ |22 (052R) 071y -
0:2R]x T~

So (DyDyuy) converges to g, in D'([0;2R] x T"~'). By the uniqueness of the limit in
D'([0;2R] x T*"), we can say that g,, = D3Dyu. The sequence (uy) converges to u in
Humk, S0 Hmx is a complete space. N

A.2 Proof of lemma 2.1

We keep the notations introduced in section ”Spaces H,, ;”. Our goal here is to prove the
equivalence of the H,, ;,-norm defined above and the following one:

1F 1= (00 1<ty £ > P+ Joo)*(1 + [a])™™)2.

aEXL™
We first show that
a2 j al—124
1 = 2 (X < > PG al™ @), (A1)
0<a<k acz"
0<j<m

(N.B.: in this paragraph, for more convenient we set by convention 0° = 1, it avoids to
distinguish the cases a =0, 7 =0 ...)
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It suffices for that to show that
o 24 2T\ 25 a—12j
SNDDIf = D> | <ta,f > ( ) (T) 7 o2

lvl=3 acZ"

But we know that

= Z <%,f>¢a(vay)-

aEZL™

So by differentiating in v and y;, we have for any [,...,/; in {1,...,n — 1}

DED () = 3 < thonf > () (22 (00) 0ty ety (0.1,

aEX™

Hence

2T

2
T) J ‘ (Odo)aOdll ...Ckl]. 2

, T\ 2a
| DD £ (0,9) o= D | < war f > [2(5)™(
acZm

Then we notice that

Z \a0‘2a|0411|2...|a1j\2 = \Ozo|2a Z \all\2...|alj|2

ll,...,lje{l,...,n—l} ll,...,lje{l,...,n—l}
= \a0|2“(|041|2+...+ |Ozn_1|2)J
= Jaolfal%.

Thus we get (A.1).
Now to obtain the equivalence of the norms it remains to find two constants K and K’
such that

—\2m T\ 2a 2T\ 25 o2 —\2m
K+la)*@+@)™ < 3, (F)"(F) ool [@P < K'(1+]ao)* (1 + @)™
0<a<k
0<j<m

Let K’ = max(1, (
Therefore

27T ®TE™).

s
~—
\V)
—~
=
~—
[\
B
—~
Sy
~—
V)
—
S
~—
N
3
—~
=
~—
\v)
—~~
S
~—
V)
—~
=
~—
V)
—~

=B

2T\ 2m
T4 (S a2+ o+ (E)* () ao* @™ < K'(1+ ol + .. + oo [@™)

R R T
2k 2m
K'Y " Clhilao/ > Ch
=0 h=0

K'(1+ o) (1 + [a]) ™™

IA

IN
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Thus we can write

1F Bomge < KD | < s f > 1+ Jao)*(1+ [a])™.

acZ™

We denote 2 2k 2 2 2 2 2 2 2k 2 2k 2
é<=min(1a (&) @G @@ F)S® @G E) G E

f((l-l—|a0\2+...+\a0\2k|a|2m) < 14 (%)2‘040‘24-,,,4-(—)Qk(_)Qm‘a0|2k|@|2m

By induction, we can calculate c¢; such that

1+ |aol® + ... + |ap|*
L+ [af + ...+ [a™

Ck(l + |050D2k

<
em(1+ @)™ <
(take ¢; = 3, ¢;41 = %). Furthermore,

(1+ |aol? + ... + |og[**|@*™)
(1+ |ao® + ... + |oo/**|@*™).

cr(1+ o)1+ |[@ + ... + |[@*™)
cx(1+ \ozo\)%cm(l + |@\)2m

IN N

We deduce from this that,
Kegen Y | <thar f> P+ ao)* (L + @)™ < 1| f oy -
aEZ™

Remark A.1 : As it is done in the classical Sobolev spaces, we extend the spaces H,, x
to m, k positive reals by the definition below:

Hon i ([0;2R] x T"') = {f € L*([0;2R] x T Y | <ty f > (14 |ao))*(1 + [@])*™ < o0}

aEZ™

A.3 Proof of lemma 2.2

We begin by establishing the following embedding .
n—1

If 2”; 2 then Hmu([0;2R] x T 1) € L*([0;2R] x T* ).
2

We recall that

f - Z fa(QR)_%T_nTilei(aov%-l-a_y%")

aEZL™
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where f, =< ¥, f >. Therefore
1., n-1
1f =< @R) 2T 7 3 |fal
acZ™

By the Cauchy-Schwarz inequality, we get

k alh™ 1
Tl = 3 Al e 04 00" X (e
1 1
< VT T )

But we know that

Z L = / / L dr d" ly
(1 + [oo[)?*(1 + [a])>m zer Jyemn-1 (14 [2])?F(1 + [y[)>™

[1<V/AL
1 1
= 7dx/ — d"ly.
/zeIR L+ lzD)* " Jyemn—r 1+ |y[)>m

These both integrals are convergent if 2k > 1 and 2m >n —1ie. k£ > % and m > "T_l
At last, by using the equivalence of the norms above, we obtain

I f llze< el £ llsm -

Now we show that

n—1
t{ 120F then Hu(0:28] < T) € OO0 2R x T
2
Let f in Hy,k, for every nin IN*, we set f,, = J1 f (J has been defined in section ”Spectral

approximation of ¢). It is clear that f, are in #,,, and that

| fo Ml < el fu llemon - (A.2)

Then by the theorem of Plancherel we have || Jiv — v ||2— 0, if we apply this to
v=f,..,DED"f, we get

|| f - fn ||7{m,k_) 0.

The sequence (f,) converges to f in H,,, hence (f,) is a Cauchy sequence in H,, , and
in L* by (A.2). Moreover the functions f, are continuous, so (f,) is a Cauchy sequence
in C°([0;2R] x T*!). As this space is complete it implies that (f,) converges to g in
CO([0; 2R] x T"1).

It remains to show that f = g almost everywhere. (f,) converges to g in L? indeed

_1y 1
| fr = 9 lz2(ozrixrs < QR X T N2 || fa = g llzeeqogzr)xTn1— 0.

But (f,) converges to f in H,, x, in particular (f,) converges to f in L?, by the uniqueness
of the limit in L?, we can write that f = g almost everywhere.
For the class C', it suffices to apply the result above to 2 f, %f, .., DVDLf. A
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A.4 Proof of lemma 2.3

We want to show that if £ < &' then the embedding H,, »» < Hp is compact. We deal
with the equivalent norm 1 f [ defined above and we will denote it also || f ||xmk. As
(14 ap)® < (14 ag)® it is clear that || ... [lams<|| - [[2mpr- Set i : Hop = Hump, @
is a compact operator if it changes a bounded set in a relatively compact set. Let (fy)
a bounded sequence of H,, . We have seen that H,, is reflexive so we can extract a
subsequence (fu) of (f,) which weakly converges to f in Hpyp, and || f [|3,, ,, < liminf ||
for la,, o< M. We consider || f — f ||§_lmk and cut the sum on o € Z" in two parts,
namely I and 11, as it follows

| for = f W3, = I+1I
with

I = 3 [ <Warfur = F> P+ |ao) (1 +[a])™™

la|<A
_ > (1+ |040D2kl —\2m
I = Z | <oy fur — > (1 + || ) 2F=F) (1+[af)
la|>A

The function f < 1,, f > is a continuous linear form on H,, s/, hence
< Vo frar >=< Vg, [ >1e. <Yy, fur — f >— 0. It implies that for all e; > 0 there exists
n > 0 such that for all n’ > n , Z | < o, fr — F>1><€?. So

la|<A
I S 8%(1+A)2k+2m.

We treat now the second term 7. We notice that
1

I 2

< (1+A)2(k'—k) ” fn f ||7-Lm’k,
1 2
< g ayemn U e + 1S e )

AM?
< S aNorLl N
(14 A2k k)
2 2
(H:)% < 5. Then we set
So there exists 1 in IN such that for all n' > 7,

Therefore for all € > 0, we choose A tall enough to get
fL= Tar e

4M?

2 2 2k+2m
| fr = f ||7—tmk < ef(1+4) + (1+ A)Z(k'—k)

g2 g
— 4+ — =
2 2

< +
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We obtain that (f,s) converges to f in H,, . It means that i(f,) is a compact set a
fortiori a relatively compact set.
We proceed similarly for the compact embedding H,, j — Hp i if m < m'.

A.5 Proof of lemma 2.4

Here we suppose that f € H,p N Hppe with & < k', Let v € [0;1], it is clear that
Honk C Humykt(1—y)k'> 50 £is in Hyp yht(1—y)er- We know that

£ 13 = D [ <da,f> L+ lag]) (L + [al)>,

m,yk+(1—v)k/ -
aEZ™

If we set
9(@) = (| <o f > 1+ |01+ [a])*™)?
ha@) = (| < tar f> P+ |ao))? (1 + [a)?™)

we can write that

17 B = S 9(@)h(a).

aEHL™

Then by using Holder inequality, we get

> g(@h@) < (3 Ig(@)l)"( 3 Ih(@)m)"

aEXZ™ aEZ™ aEZ™

(D 1<t f > P+ o))+ [@)™) =] £ 157,

[1<V/AL
(3 1< s £ > [P0+ o)™ (1 + [al)?™) ™ =] £ |27
aEZ"™

we finally obtain,

2 2(1—
(I PR -

m, k!

We proceed similarly for the case f € My, N Hiy ), With m < m/, hence we can say that
for all v in [0;1] ,

o . 1—
fisin Homy gy e and | f (a0 SIF R, I Tl A
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B Appendix

B.1 Proof of the lemma 6.2
We notice that

||/ f(s,y)ds ||’Hm/,1([0;R]><T"*1)
0

* [
== DV d 2(10- n—1
Z | 500 y/O f(s,9)ds ||L2(jo; yxTe-1)

0<a<k
0<[v|<m
= Z I D;/ f(s,9)ds ||L2(jo;r)xn-1) + Z | Dy f(v,y) |lz2o;r)xTn-1) -
0< | <m! 0 0<|v|<m?

If Dy f is in C°([0; R] x T"~') then

Dy [ fs.wis = [ Dyfts.is
and by the inequality of Cauchy-Schwarz
Y TR TR
I/O Dy f(s,y)ds| < vz || Dyf(v,y) ll2own< B2 || Dy f (0, 9) llz2(osr)) -

Thus

v R v
I Dy / f(s,y)ds ||z, = / / DY / (s, y)ds[2dv d" 'y
0 0 ’]I‘n—l 0
3 f 2 -1
< ® [ [ ippseaka ey
’]l‘n—l 0
3 v
— R2 || Dyf(’l),y) ||%2([0;R]><']1‘"—1)'

Finally we obtain

v
3
| / f(8,9)ds |l (oirxro-y < (B2 + 1) || £(8,9) 94,0 (10 m)xTn-1) -
0

B.2 Proof of the lemma 6.3
By definition

u+h aa ut+h
||/ flo)do ||, .= Z I avaDZ/ f(o)do ||z

0<a<1
0<[v|<pu
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And if DyDy f is continuous in all its variables, we have

u+h
|| / DD f(0)do |2

R u+h
= / / |/ DiDy f(o)dodv d" 'y
0 T7—1 Ju

R u+h u+h
= [ [ (] penisen [ pipyseiandd .
0 Tr-1 Juy u

u+h
| DeD? / f(o)do |12

We can commute the integration in ¢ and (v, y) by using the theorem of Fubini, hence
u+h u+h R u+h
| [ piDises e = [ [ o[ DDy yinn ) do
u u 0 Tn— U
Then by the inequality of Cauchy-Schwarz used on the integration in (v,y), we get
u+h
I [ DD (oo [Ragomern
u+h u+h
< [ U DD lromernnll [ DD ()Y lumpery) do
The second factor under the integral in ¢ is independent of o, so we can get it out, thus
u+h
I [ DD (@) aqoperens
u+h u+h
<l / Dy Dy f(v)dy | L2(0;m)x -1 / (Il Dy Dy f () || L2 (o; jxTn-1y) do-

Then if || f:+h Dy Dy f(o)do ||L2(jo;r)xTn-1) vanishes, the inequality we want to show is
trivial. Else we can divide by this positive quantity and so obtain

u+h u+h
105D [ £0)do luagomorn sy < [ (1 DED}FO) lnaqoern ) do

To conclude it suffices to add this inequality on every 0 <a <1, 0 <| v |< p. A
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